- Different spatial arrangements of atoms that result from rotation about carbon-carbon single bonds are known as **conformations**
- Different conformations also are called **conformational isomers** or **conformers**

Newman Projections

- A convenient way to describe conformation isomers is to look at the molecule along the axis of the bond of interest
- A Newman projection is a graphical representation of such a view

- When ethane molecules rotate about the carboncarbon bond there are two extremes:
 - staggered conformation
 - eclipsed conformation

staggered conformation for rotation about the C-1—C-2 bond in butane

eclipsed conformation for rotation about the C-1—C-2 bond in butane

Rusal

- Rotation about the C-C bond of ethane is not completely free
- Electrons of C-H bonds repel electrons of other C-H bonds if they get too close together
- For these reasons the eclipsed conformation is not as stable as the staggered conformation

• The extra energy of the eclipsed conformation is called **Torsional Strain**

Conformations of Butane: Rotation About the C_2 - C_3 Single Bond

ball-and-stick model of butane

staggered conformation for rotation about the C-1—C-2 bond in butane

eclipsed conformation for rotation about the C-1—C-2 bond in butane

Conformations of Butane: Rotation About the C₂-C₃ Single Bond

Cycloalkanes: Ring Strain

- Most ring compounds found in nature are 5- and 6membered rings
- There is some stability in 5- and 6- membered rings
- Smaller rings such as 3- and 4- membered rings are considerably less stable
- Deviation of C-C-C bond angles from the tetrahedral value of 109.5° known as angle strain
- Bonds in smaller rings take on a bent appearance, and are banana bonds

Cycloalkanes: Ring Strain

good overlap strong bond (a)

poor overlap weak bond (b)

Cycloalkanes: Ring Strain

Cycloalkanes

- Angle strain is strain that results from deviations from the ideal e.g. tetrahedral angle of 109.5°
- Torsional strain is strain that results from repulsion between bonding electrons of one substituent and a neighboring substituent
- Steric strain is the strain that results from atoms or groups of atoms approaching each other too closely

6-membered rings are almost free of strain in a Chair conformation

	Heat of formation		"Strainless" Heat of formation		Total strain energy	
	(kcal/mol)	(kJ/mol)	(kcal/mol)	(kJ/mol)	(kcal/mol)	(kJ/mol)
cyclopropane	+12.7	53.1	-14.6	~61.1	27.3	114.22
cyclobutane	+6.8	24.5	-19.7	-82.4	26.5	101.9
cyclopentane	-18.4	-77.0	-24.6	-102.9	6.2	25.9
cyclohexane	-29.5	-123.4	-29.5	-123.4	0	0
cycloheptane	-28.2	-118.0	-34.4	-143.9	6.2	25.9
cyclooctane	-29.7	-124.3	-39.4	-164.8	9,7	40.6
cyclononane	-31.7	-132.6	-44.3	-185.4	12.6	52.7
cyclodecane	-36.9		-49.2	-205.9	12.3	51.5
cycloundecane	-42.9	-179.5	-54,1	-226.4	11.2	46.9

Chair Conformation of Cyclohexane

chair conformer of cyclohexane

Newman projection of the chair conformer ball-and-stick model of the chair conformer of cyclohexane

Drawing Cyclohexane in the Chair Conformation

Interconversion of Cyclohexane Conformations

- As a result of simultaneous rotation about all C-C bonds, a chair conformation of cyclohexane can interconvert to another chair conformation by a ringflip
- In the process, equatorial bonds become axial and vice versa

• There is another conformation for cyclohexane - the **boat conformation**

ball-and-stick model of the boat conformer of cyclohexane

Rusal

• While all hydrogens in the **chair conformation** are staggered, four hydrogens are eclipsed in the **boat conformation**, which is less stable

• Another destabilizing feature is the fact that two of the "axial" hydrogens become **flagpole** hydrogens

Interconversion of Cyclohexane Conformations

Monosubstituted Cyclohexanes

 When there is one substituent on the cyclohexane ring, the two chair conformations are no longer equivalent

Monosubstituted Cyclohexanes

- In an axial position there are close approaches from the hydrogens (or other substituents) located at the axial positions two carbons away
- These are called the 1,3-diaxial interactions

Conformations of Disubstituted Cyclohexanes

 If there are two substituents on a cyclohexane ring, both substituents must be considered when determining which of the two chair conformations is more stable

Conformations of 1,4-Disubstituted Cyclohexanes

cis-1,4-dimethylcyclohexane

trans-1,4-dimethylcyclohexane

Conformations of 1,4-Disubstituted Cyclohexanes

• The cis isomer must have one substituent in an axial position and one in an equatorial position

Conformations of 1,4-Disubstituted Cyclohexanes

- The trans isomer has both substituents in either the equatorial or in the axial positions
- Conformations of 1,4-Disubstituted Cyclohexanes, Of the two isomers, the trans isomer is the more stable

Conformations of Disubstituted Cyclohexanes

steric interactions make this conformation very unstable

This chair conformer has four 1,3-diaxial interactions.

Conformations of *cis*-1,3-Disubstituted Cyclohexanes

• A *cis*-1,3-disubstituted cyclohexane can exist in one of two conformations

Rusal

Conformations of *trans*-1,3-Disubstituted Cyclohexanes

 Both conformers of *trans*-1-*tert*-butyl-3methylcyclohexane have one substituent in an axial position and one in an equatorial position

